The Subject Math GRE Test: Linear Algebra

Oscar Vega
ovega@csufresno.edu

Fresno State
October $19^{\text {th }}, 2018$

GRE

- The Subject Math GRE is, roughly, partitioned as follows:
(a) Calculus and its applications ($\sim 50 \%$)
(b) Linear Algebra, Abstract Algebra, Number Theory. ($\sim 25 \%$)
(c) Discrete Math, Differential stuff, Topology, Probability, Statistics, etc. ($\sim 25 \%$).
- So, you should expect $10-15 \%$ of the questions in the test to be on Linear Algebra topics. That is $7-10$ questions.
- In this presentation, we will go over Linear Algebra concepts and sample problems ${ }^{1}$.

[^0]
Question 1

Suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R} such that

$$
T\binom{1}{-3}=5 \quad \text { and } \quad T\binom{1}{1}=-2
$$

Then,

$$
T\binom{0}{2}=
$$

(A) -4
(B) $-\frac{7}{2}$
(C) -1
(D) 3
(E) $\frac{9}{22}$

Concepts needed: Linear combinations, basis, linear transformation defined in a basis.

Difficulty: Easy.

Question 2

Suppose \mathcal{P}_{7} is the set of polynomials with coefficients in \mathbb{Z}_{5} and degree less than or equal to 7 (union $\{0\}$). If the operator D sends $p(x)$ in \mathcal{P}_{7} to its derivative $p^{\prime}(x)$, what are the dimensions of the null space n and range r of D ?

$$
\begin{gathered}
\text { (A) } n=1, r=6 \quad \text { (B) } n=1, r=7 \\
\begin{array}{cl}
\text { (D) } n=2, r=6 & \text { (E) } n=3, r=5
\end{array}
\end{gathered}
$$

Concepts needed: Null space/Kernel, operator/linear transformation, dimension formula/first isomorphism theorem.

Difficulty: Medium (only because of language).

Question 3

Let $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, then $A^{500}=$
(A) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$
(B) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
(C) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
\text { (D) }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(E) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

Concepts needed: Permutation matrix, change of basis matrix.
Difficulty: Medium.

Question 4

Suppose V is a real vector space of finite dimension n. Call the set of matrices from V into itself $\mathcal{M}(V)$. Let $T \in \mathcal{M}(V)$. Consider the two subspaces
$\mathcal{U}=\{X \in \mathcal{M}(V) ; T X=X T\} \quad \mathcal{W}=\{T X-X T ; X \in \mathcal{M}(V)\}$
Which of the following must be TRUE?
I. If V has a basis containing only eigenvectors of T then $\mathcal{U}=\mathcal{M}(V)$.
II. $\operatorname{dim}(\mathcal{U})+\operatorname{dim}(\mathcal{W})=n^{2}$.
III. $\operatorname{dim}(\mathcal{U})<n$.
(A) I only
(B) II only
(C) III only
(D) I and II only (E) I, II, and III

Concepts needed: Image and kernel of a linear transformation, eigenvectors, first isomorphism theorem/dimension formula. Difficulty: Hard.

Question 5

Suppose A is a 3×3 matrix such that

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+3 \lambda^{2}+\lambda-3
$$

where I is the 3×3 identity matrix. Which of the following are TRUE?
I . The trace of A is 3 .
II. The determinant of A is -3 .
III. The matrix A has eigenvalues -3 and 1 .
(A) I only
(B) II only
(C) III only
(D) I and II only (E) I, II, and III

Concepts needed: Characteristic polynomial of a matrix, eigenvalues, determinant and trace.

Difficulty: Medium/Hard (because of obscurity of concepts needed).

Question 6

Suppose A and B are $n \times n$ matrices with real entries. Which of the following are TRUE?
I. The trace of A^{2} is non-negative.
II. If $A^{2}=A$, then the trace of A is non-negative.
III. The trace of $A B$ is the product of the traces of A and B.
(A) II only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III

Concepts needed: Trace.

Difficulty: Hard (unless you look at the choices)

Thanks!

[^0]: ${ }^{1}$ I found these problems on the internet, I do not claim that I created them.

